
Low-Level API

Recommendation from prpl

Version 1.3

Copyright © 2019-2022 prpl Foundation

Revision History
Version Date Author Description

0.5 2019.10.20

John Crispin (prpl) &
Wouter Cloetens (Liberty
Global)

v1 APIs

0.6 2019.10.28 Mirko Lindner (SmartRG) Surrounding texts

1.0 2019-11-24 David Barr (Intel)
Approved text by the Prpl
Technical Steering Committee

1.1 2020-01-29
Wouter Cloetens
(Deutsche Telekom)

Cosmetic changes and addition of
the 2017 approved WLAN API
text. Fixed switchdev link.

1.2 2020-05-05
Wouter Cloetens
(Deutsche Telekom)

Wireless: updated kernel
documentation link.

Appendix 1: updated
linux-wireless document link.

1.3 2022-02-14
Wouter Cloetens
(Deutsche Telekom)

Updated kernel documentation
links.
Removed John Crispin from
contact list.
Reorganised by sections.
Replaced button
recommendation with gpio-keys.

Copyright © 2019-2022 prpl Foundation

RFS/XPS: marked as optional.
Elaborated on Ethernet modeling,
added ethtool. Deprecated swdev.

Added eMMC.

Replaced "Features not part of
LLAPI" with "Features under
review."
Added ePON to the list of
currently out of scope interfaces.

Rewrote packet offload, adding
IPsec, and QoS sections.

Added copyright preamble
section.

Copyright © 2019-2022 prpl Foundation

Content
IMPORTANT NOTICES, IPR STATEMENT, DISCLAIMER AND COPYRIGHT 7

1.1 ABOUT PRPL 7

1.2 THIS MAY NOT BE THE LATEST VERSION OF THIS PRPL DOCUMENT 7

1.3 THERE IS NO WARRANTY PROVIDED WITH THIS PRPL DOCUMENT 7

1.4 EXCLUSION OF LIABILITY 7

1.5 THIS PRPL DOCUMENT IS NOT BINDING ON PRPL NOR ITS MEMBER
COMPANIES 8

1.6 INTELLECTUAL PROPERTY RIGHTS 8

1.7 COPYRIGHT PROVISIONS 8

1.7.1 INCORPORATING PRPL DOCUMENTS IN WHOLE OR PART WITHIN
DOCUMENTS RELATED TO COMMERCIAL TENDERS 8

1.7.2 COPYING THIS PRPL DOCUMENT IN ITS ENTIRETY 9

INTRODUCTION 10

BACKGROUND 11

INTRODUCTION TO THE LOW-LEVEL API 11

WAY OF WORKING 12

PURPOSE OF THIS DOCUMENT 13

INTENDED AUDIENCE 13

API 14

PERIPHERAL INTERFACES 14

GPIO 14

BUTTON 14

PWM 15

LED 15

I2C 16

SPI 16

SENSORS 17

CPU 18

FREQUENCY AND VOLTAGE SCALING 18

CPU IDLE 18

Copyright © 2019-2022 prpl Foundation

CPU COOLING 19

GENERIC THERMAL FRAMEWORK 19

PACKET OFFLOAD 20

FUNCTIONAL REQUIREMENTS: 20

PHASE 1: CORRECT INTERACTION WITH LINUX 21

PHASE 2: STANDARDISED USER SPACE AND KERNEL INTERFACES 21

PHASE 3: FLOWTABLE OFFLOAD 22

RFS/XPS 22

IPSEC OFFLOAD 23

QOS 24

PHASE 1: PROPRIETARY API 24

PHASE 2: LINUX TC 24

PHASE 3: INTEGRATION IN FLOWTABLE 25

WIRELESS LAN 26

ETHERNET 27

ETHERNET PHY 27

DSA/SWITCHDEV 27

MULTICAST 29

MDB/MCAST 29

CRYPTOGRAPHY 30

HARDWARE CRYPTOGRAPHY 30

HARDWARE RNG 30

STORAGE 31

MTD 31

MMC/SD/SDIO 31

LINUX CONTAINERS 32

CONTAINER PRIVILEGED 32

CONTAINER UNPRIVILEGED 32

FEATURES UNDER REVIEW 33

CONTACTS 33

APPENDIX 1: WLAN API 34

RECOMMENDATIONS 34

Copyright © 2019-2022 prpl Foundation

SCOPE 34

REASONING 34

RECOMMENDED APIS 35

REFERENCES 37

Copyright © 2019-2022 prpl Foundation

1. Important notices, IPR statement, disclaimer and

Copyright

This chapter contains important information about PRPL and this document (hereinafter ‘This

PRPL Document’).

1.1 ABOUT PRPL

The prpl Foundation (PRPL) is a not-for-profit organization which publishes documents

including, but not limited to, Requirements, Specifications, Recommendations, API application

programming interfaces, and Test Plans.

1.2 THIS MAY NOT BE THE LATEST VERSION OF THIS PRPL DOCUMENT

This PRPL Document is the output of the Working Groups of the PRPL and its members as of

the date of publication. Readers of This PRPL Document should be aware that it can be revised,

edited or have its status changed according to the PRPL working procedures.

1.3 THERE IS NO WARRANTY PROVIDED WITH THIS PRPL DOCUMENT

The services, the content and the information in This PRPL Document are provided on an "as is"

basis. PRPL, to the fullest extent permitted by law, disclaims all warranties, whether express,

implied, statutory or otherwise, including but not limited to the implied warranties of

merchantability, non-infringement of third-parties rights and fitness for a particular purpose.

PRPL, its affiliates and licensors make no representations or warranties about the accuracy,

completeness, security or timeliness of the content or information provided in the PRPL

Document. No information obtained via the PRPL Document shall create any warranty not

expressly stated by PRPL in these terms and conditions.

1.4 EXCLUSION OF LIABILITY

Any person holding a copyright in This PRPL Document, or any portion thereof, disclaims to the

fullest extent permitted by law (a) any liability (including direct, indirect, special, or

consequential damages under any legal theory) arising from or related to the use of or reliance

upon This PRPL Document; and (b) any obligation to update or correct this technical report.

Copyright © 2019-2022 prpl Foundation

1.5 THIS PRPL DOCUMENT IS NOT BINDING ON PRPL NOR ITS MEMBER COMPANIES

This PRPL Document, though formally approved by the PRPL member companies, is not binding

in any way upon the PRPL members.

1.6 INTELLECTUAL PROPERTY RIGHTS

Patents essential or potentially essential to the implementation of features described in This

PRPL Document may have been declared in conformance to the PRPL IP Policy (available at the

PRPL website: www.prplFoundation.org).

1.7 COPYRIGHT PROVISIONS

This PRPL Document is copyrighted by PRPL, and all rights are reserved. The contents of This

PRPL Document are protected by the copyrights of PRPL or the copyrights of third-parties that

are used by agreement. Trademarks and copyrights mentioned in This PRPL Document are the

property of their respective owners. The content of This PRPL Document may only be

reproduced, distributed, modified, framed, cached, adapted or linked to, or made available in

any form by any means, or incorporated into or used in any information storage and retrieval

system, with the prior written permission of PRPL or the applicable third-party copyright

owner. Such written permission is not however required under the conditions specified in

Section 1.7.1 and Section 1.7.2:

1.7.1 INCORPORATING PRPL DOCUMENTS IN WHOLE OR PART WITHIN DOCUMENTS

RELATED TO COMMERCIAL TENDERS

Any or all section(s) of PRPL Documents may be incorporated into Commercial Tenders (RFP,

RFT, RFQ, ITT, etc.) by PRPL and non-PRPL members under the following conditions:

1. The PRPL Requirements numbers, where applicable, must not be changed from those
within the PRPL Documents;

2. A prominent acknowledgement of the PRPL must be provided within the Commercial
document identifying any and all PRPL Documents referenced and giving the web
address of the PRPL;

3. The Commercial Tender must identify which of its section(s) include material taken from
PRPL Documents and must identify each PRPL Document used, and the relevant PRPL
Section Numbers; and,

4. The Commercial Tender must refer to the copyright provisions of PRPL Documents and
must state that the sections taken from PRPL Documents are subject to copyright by
PRPL and/or applicable third parties.

Copyright © 2019-2022 prpl Foundation

https://prplfoundation.org/

1.7.2 COPYING THIS PRPL DOCUMENT IN ITS ENTIRETY

This PRPL Document may be electronically copied, reproduced, distributed, linked to, or made

available by other means, or incorporated into or used in any information storage and retrieval

system, but only in its original, unaltered PDF format, and with its original PRPL title and file

name unaltered. It may not be modified without the advanced written permission of the PRPL.

Copyright © 2019-2022 prpl Foundation

2. Introduction

This document identifies low-level APIs recommended by prpl to promote

harmonization and convergence among SW platforms.

The recommended APIs should be supported by BSPs in order to best leverage

the efforts from open-source software communities.

Harmonization and convergence is needed because the current landscape

employs disparate abstraction layers from numerous different platform

providers.

This proliferation of different abstraction layers has made porting efforts more

difficult, harder to maintain, and hence unscalable to large numbers of CPE

platforms.

Prpl therefore recommends instead the best practice of relying on standard

kernel interfaces, wherever possible.

This recommendation lists those APIs corresponding to various BSP subsystems.

Some of the APIs are already proven and mature, and hence implementable now.

Others remain works-in progress, suitable for prototype development and

verification.

While others are forward-looking toward the future.

Thus, prpl expects these recommendations to be updated over time—see

https://prplfoundation.org/documents/.

https://prplfoundation.org/documents/

3. Background

Introduction to the Low-Level API

In a world of growing complexity and a need by ISPs to launch new devices at an

ever-faster pace, the industry is looking for ways to reduce product development times

in an effort to cut time-to-market as much as possible.

Open API efforts such as prpl’s High-Level API are designed to drastically reduce the

effort and thereby time required to integrate an ISP’s services on a new device and

software platform.

However, a big driver in time-to-market is the effort to port any software stack to a new

chipset, especially if this chipset comes from an SoC vendor the software integrator is

unfamiliar with. Integrating new board support packages or SoC SDKs can be a lengthy

and difficult process. A miscalculation or unexpected finding can threaten a project’s

overall success.

Historically, chipset SDKs are almost complete CPE stacks which were designed to help

the hardware vendor to launch the product as quickly as possible. With the increase of

services and customization required by each ISP, software vendors have begun to

replace large parts of the SoC’s SDK, some even only use the bare drivers. As long as the

underlying architecture remains relatively unchanged, this is a valid and promising

approach.

However, in addition to more services ISPs have moved to also require different

chipsets and solutions from different SoC vendors to be used in their CPEs. Some do so

because of procurement and continuity strategies, others simply because they

deployed technologies that require a specific chipset to be used. In either case, the

pressure to find ways to speed up product development increases even further.

Copyright © 2019-2022 prpl Foundation

Software vendors and hardware manufacturers are now faced with ISP customers who

are searching for partners who can support more customization and services on a

greater number of devices using the largest variety of chipset vendors at the fastest

pace possible.

To do so, industry representatives in prpl have agreed to establish a new standard

integration boundary for software stacks on top of SoC SDKs. Instead of every software

integrator integrating every driver and SDK feature, the SoC vendors are being asked to

consolidate their APIs and offer all core features through open, publicly available and

peer-reviewed kernel APIs - the prpl Low-Level API. Standardizing these interfaces will

dramatically reduce the time it takes a software vendor to integrate a chipset maker’s

SDK and also result in accelerated innovation throughout the whole industry.

Of course, an Open API effort can never capture 100% of all functionality and SoC

vendors will want to continue to innovate and differentiate. Therefore it is important to

note that the Low-Level API is not meant to be the only API between CPE stack and SoC

SDK, but it is meant to be the library of how standard features are to be exposed and

made available to the higher layers.

Way of working

In order to make this transition to a harmonized API an evolution every company can

participate in and benefit from rather than disruption, the industry representatives

have designed a multi-step approach.

The first step is the creation of API proposals based on existing kernel APIs. Once

ratified by prpl, representatives will engage with the relevant chipset vendors to seek

their agreement and support for the proposed interfaces.

As part of the engagement, prpl will work with the chipset vendors to establish

timelines for when their SDK will support which of the proposed interfaces

Copyright © 2019-2022 prpl Foundation

The final step is the creation of a validation tool that will help SoC vendors prove their

conformity and help software integrators when adopting new chipsets and their SDKs.

This process will be repeated for each release of API candidates and may be

accompanied by further naming and numbering schemes.

Purpose of this document

This document describes the first set of API candidates the prpl low-level API working

group has identified. It will serve as the baseline for the conversations with chipset

vendors as described above. As such this document does not describe any formal API or

requirement but is a working document.

Intended audience

This document is meant to be used by the technical teams at the SoC vendors to assess

the direction of the Low-Level API and compare it with their own use of kernel APIs.

Copyright © 2019-2022 prpl Foundation

1. API

Peripheral Interfaces

Non-networking peripheral interfaces.

GPIO

Feature Kernel Subsystem Kernel API Dependencies

GPIO GPIO sysfs/gpiolib None

https://www.kernel.org/doc/html/latest/driver-api/gpio/index.html

GPIO is a basic requirement for various other features and subsystems. The Vendor

kernel shall provide support via the default kernel interface. If the silicon supports GPIO

interrupts, these shall be supported using the kernel’s IRQ subsystem.

Button

Feature Kernel Subsystem Kernel API Dependencies

Button gpio-keys input gpiolib, gpio,
devicetree

Input subsystem: https://www.kernel.org/doc/html/latest/driver-api/input.html

Buttons connected to GPIO must be modelled using gpio-keys

● with interrupt support: gpio_keys.c

Copyright © 2019-2022 prpl Foundation

https://www.kernel.org/doc/html/latest/driver-api/gpio/index.html
https://www.kernel.org/doc/html/latest/driver-api/input.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/input/keyboard/gpio_keys.c

● without: gpio_keys_polled.c

Modelling through DeviceTree:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentati
on/devicetree/bindings/input/gpio-keys.yaml

Buttons not connected to GPIO interfaces may be exposed through the input
subsystem in a different fashion.

The aim is to align on common keycodes for typically present pushbuttons on
gateways and access points. A (WPS) pushbutton must use KEY_WPS_BUTTON.
Others are to be defined.

PWM

Feature Kernel Subsystem Kernel API Dependencies

PWM PWM sysfs None

https://www.kernel.org/doc/html/latest/driver-api/pwm.html

PWM is a basic requirement for controlling a LEDs brightness. If the silicon has a PWM

block, it shall be supported by the kernel's PWM layer.

LED

Feature Kernel Subsystem Kernel API Dependencies

LED LED sysfs/leds GPIO/PWM

Copyright © 2019-2022 prpl Foundation

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/input/keyboard/gpio_keys_polled.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/devicetree/bindings/input/gpio-keys.yaml
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/devicetree/bindings/input/gpio-keys.yaml
https://www.kernel.org/doc/html/latest/driver-api/pwm.html

https://www.kernel.org/doc/html/latest/leds/index.html

LEDs shall be supported using the kernel’s LED subsystem. This can be done via a

custom, the leds-gpio or the leds-pwm driver. All LEDs shall follow the kernel’s naming

scheme.

I2C

Feature Kernel Subsystem Kernel API Dependencies

I2C I2C ioctl/i2cdev (GPIO)

https://www.kernel.org/doc/html/latest/i2c/index.html

https://www.kernel.org/doc/html/latest/driver-api/i2c.html

I2C busses shall be supported using the kernel’s I2C subsystem. This can be done via a

custom or the i2c-gpio driver.

SPI

Feature Kernel Subsystem Kernel API Dependencies

SPI SPI ioctl/spidev (GPIO)

https://www.kernel.org/doc/html/latest/driver-api/spi.html

SPI busses shall be supported using the kernel’s SPI subsystem. This can be done via a

custom or the spi-gpio driver.

Copyright © 2019-2022 prpl Foundation

https://www.kernel.org/doc/html/latest/leds/index.html
https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/driver-api/i2c.html
https://www.kernel.org/doc/html/latest/driver-api/spi.html

Sensors

Feature Kernel Subsystem Kernel API Dependencies

Sensors IIO sysfs (GPIO/I2C/SPI)

https://www.kernel.org/doc/html/latest/driver-api/iio/index.html

Sensors supported/required by the solution shall be supported using the kernel's IIO

subsystem.

Copyright © 2019-2022 prpl Foundation

https://www.kernel.org/doc/html/latest/driver-api/iio/index.html

CPU

Frequency and Voltage Scaling

Feature Kernel Subsystem Kernel API Dependencies

Frequency Scaling cpu-freq sysfs None

https://www.kernel.org/doc/html/latest/cpu-freq/index.html

All dynamic frequency and voltage scaling of the SoC cores has to happen via the

kernel’s cpu-freq subsystem. Governors shall be supported to control behaviour.

CPU Idle

Feature Kernel Subsystem Kernel API Dependencies

CPUIdle cpuidle sysfs None

https://www.kernel.org/doc/html/latest/admin-guide/pm/cpuidle.html

https://www.kernel.org/doc/html/latest/driver-api/pm/cpuidle.html

As soon as the OS enters the idle loop for a CPU core or thread, SoC-specific behaviour

and any special sleep modes shall be integrated in the kernel’s CPUIdle subsystem.

Governors shall be supported to control behaviour.

Copyright © 2019-2022 prpl Foundation

https://www.kernel.org/doc/html/latest/cpu-freq/index.html
https://www.kernel.org/doc/html/latest/driver-api/pm/cpuidle.html

CPU Cooling

Feature Kernel Subsystem Kernel API Dependencies

CPU Cooling thermal sysfs None

https://www.kernel.org/doc/html/latest/driver-api/thermal/cpu-cooling-api.html

If a CPU cooling method is supported, it must be registered with the CPU cooling API, to

allow control by thermal governors.

Generic Thermal Framework

Feature Kernel Subsystem Kernel API Dependencies

Thermal Zone sysfs thermal sysfs None

https://www.kernel.org/doc/html/latest/driver-api/thermal/sysfs-api.html

The generic thermal sysfs provides a set of interfaces for thermal zone devices (sensors)

and thermal cooling devices (fan, CPU). Any supporting hardware must register with

these.

Copyright © 2019-2022 prpl Foundation

https://www.kernel.org/doc/html/latest/driver-api/thermal/cpu-cooling-api.html
https://www.kernel.org/doc/html/latest/driver-api/thermal/sysfs-api.html

Packet Offload

A gradual transition is planned from proprietary integrations of packet offload

mechanisms, by hooking into the Linux networking stack, to a unified open source flow

identification and software packet offload mechanism, with clearly defined hooks for

hardware solutions.

Functional requirements:

It must be possible to:

1. control at what point exactly offload of a flow starts

2. interrupt offload of a flow

3. configure the number of packets of a new flow that go through the slowpath

(Linux networking stack) before offload starts

4. offload a multicast flow as of the first packet, specifying the ingress interface and

egress interfaces

5. modify the list of multicast egress interfaces (add/remove) of an offloaded

multicast flow

6. stop offload of a multicast flow, taking into account that there is a delay between

sending a leave request and when the last packet arrives

7. read the following per unicast IP flow metrics, regardless of whether the flow is

handled through the Linux networking stack or whether it is offloaded in

software or hardware: rx/tx packets, rx/tx bytes

8. query the state of a unicast IP flow, and be notified in real time of state changes

9. read the following multicast IP flow metrics, regardless of whether the flow is

handled through the Linux networking stack or whether it is offloaded in

software or hardware: rx/tx packets, rx/tx bytes

Copyright © 2019-2022 prpl Foundation

10. A flow's transition from slowpath to fastpath SHOULD not cause packets to be

delivered out of sequence.

Phase 1: correct interaction with Linux

1. When SKB mark bit 0x20 is set, neither software nor hardware packet offload of a

flow of which the packet may be part may be started. In phase 1, it is acceptable

for static configuration (e.g. netfilter rules) to translate this to a proprietary

mechanism, such as a different SKB mark or a netfilter target.

2. When the conntrack flow entry is deleted (possible from user space through the

netlink interface), flow offload must stop.

3. A proprietary interface to configure the number of packets statically, typically at

boot time, is acceptable.

4. A proprietary multicast control mechanism is acceptable.

5. A proprietary multicast control mechanism is acceptable.

6. A proprietary multicast control mechanism is acceptable.

7. Conntrack metrics must be updated, if not in real-time, then at regular intervals.

When the conntrack flow is terminated, the metrics must be accurate.

8. Conntrack integration is required.

9. A proprietary multicast management interface is acceptable.

Phase 2: standardised user space and kernel interfaces

1. The SKB mark bit must be sufficient information to postpone offload.

2. No change.

3. Interface to be defined.

4. Interface to be defined.

5. Interface to be defined.

6. Interface to be defined.

7. No change.

Copyright © 2019-2022 prpl Foundation

8. No change.

9. Interface to be defined.

Phase 3: Flowtable offload

Feature Kernel Subsystem Kernel API Dependencies

Flowtable offload net nftables V5.7

https://www.kernel.org/doc/html/latest/networking/nf_flowtable.html

Silicon supporting HW accelerated networking shall hook its hardware offload

capabilities into the flowtable offload infrastructure.

RFS/XPS

Feature Kernel Subsystem Kernel API Dependencies

RFS/XPS net sysfs None

https://www.kernel.org/doc/html/latest/networking/scaling.html

In the rare case that the Silicon supports frame steering in HW, it shall be hooked into

the kernel's standard configuration interface.

This interface is optional.

Copyright © 2019-2022 prpl Foundation

https://www.kernel.org/doc/html/latest/networking/nf_flowtable.html
https://www.kernel.org/doc/html/latest/networking/scaling.html

IPsec offload

Feature Kernel Subsystem Kernel API Dependencies

XFRM net sysfs None

https://www.kernel.org/doc/html/latest/networking/xfrm_device.html

Any hardware-based IPsec offload must integrate into the XFRM (network) device

interface.

Copyright © 2019-2022 prpl Foundation

https://www.kernel.org/doc/html/latest/networking/xfrm_device.html

QoS

A gradual transition is planned from proprietary integrations of QoS queue

configuration and classification mechanisms to a standard interface in the packet

offload system.

It is recognized that silicon vendors have hardware-assisted QoS capabilities that do not

correspond to the software-based Linux kernel traffic control schedulers.

Phase 1: proprietary API

It is acceptable that the vendor provides a proprietary user space API for queue and

scheduler configuration purposes.

Per-packet classification is typically performed by netfilter rules. These set the five least

significant bits of the SKB mark of a packet to a queue number. It is acceptable that, at a

later stage is netfilter packet processing, this is converted to a proprietary manner of

classifying the packet, e.g. using a netfilter rule.

Phase 2: Linux tc

In this phase, the userspace-kernel interface is replaced with the netlink interface used

by tc.

https://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.qdisc.classful.html

Queue and scheduler configuration must occur through Linux tc. Proprietary queue

disciplines with proprietary parameters may be defined.

Per-packet classification is typically performed by netfilter rules. These set the five least

significant bits of the SKB mark of a packet to a queue number. Any low-level

implementation must respect this SKB classification mark.

Copyright © 2019-2022 prpl Foundation

https://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.qdisc.classful.html

Phase 3: integration in flowtable

To be defined at a later time.

Copyright © 2019-2022 prpl Foundation

Wireless LAN

Feature Kernel Subsystem Kernel API Dependencies

wireless LAN net/wireless cfg80211/nl80211 None

ll-api https://www.kernel.org/doc/html/latest/driver-api/80211/index.html

Wireless drivers need to provide support for cfg80211/nl80211 in a manner that will

allow an upstream hostapd/wpas to function properly.

See WLAN API for the full text of the recommendation.

Copyright © 2019-2022 prpl Foundation

http://low-level-api.e2big.org/wlan.html
https://www.kernel.org/doc/html/latest/driver-api/80211/index.html

Ethernet

Each Ethernet port shall be represented as an individual Ethernet Linux network

interface. If a port is not represented in hardware by a dedicated MAC and PHY, then it

shall be modelled as such.

Ethernet PHY

Feature Kernel Subsystem Kernel API Dependencies

Ethernet PHY PHY netlink/ioctl netlink: V5.6

https://www.kernel.org/doc/html/latest/networking/phy.html

https://www.kernel.org/doc/html/latest/networking/ethtool-netlink.html

The Ethernet switch device driver model (switchdev) is an in-kernel driver model for

switch devices which offload the forwarding (data) plan.

DSA/switchdev

Feature Kernel Subsystem Kernel API Dependencies

Ethernet switch DSA/PHY/bridge netlink/ioctl/sysfs V4.9

https://www.kernel.org/doc/html/latest/networking/switchdev.html

Copyright © 2019-2022 prpl Foundation

https://www.kernel.org/doc/html/latest/networking/phy.html
https://www.kernel.org/doc/html/latest/networking/ethtool-netlink.html
https://www.kernel.org/doc/html/latest/networking/switchdev.html

The Ethernet switch device driver model (switchdev) is an in-kernel driver model for

switch devices which offload the forwarding (data) plane from the kernel. This must be

supported.

Note that DSA-supported switches are implicitly supported by switchdev. DSA support

by itself is not mandatory; only switchdev support is.

Copyright © 2019-2022 prpl Foundation

Multicast

MDB/mcast

Feature Kernel Subsystem Kernel API Dependencies

MDB/mcast net/bridge MDB/notifier chain SSM: v5.14+

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/bridge/br
_mdb.c

The kernel MDB should be kept in sync with the multicast memberships.

Copyright © 2019-2022 prpl Foundation

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/bridge/br_mdb.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/bridge/br_mdb.c

Cryptography

Hardware cryptography

Feature Kernel Subsystem Kernel API Dependencies

HW crypto crypto in-kernel/cryptodev None

https://www.kernel.org/doc/html/latest/crypto/index.html

The kernel crypto API offers a rich set of cryptographic ciphers as well as other data

transformation mechanisms and methods to invoke these. This document contains a

description of the API and provides example code.

Hardware RNG

Feature Kernel Subsystem Kernel API Dependencies

HW RNG random, crypto hw_random,
random

None

https://www.kernel.org/doc/html/latest/admin-guide/hw_random.html

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/
hw_random.h

Hardware-implemented true random number generators must be exposed via the

crypto subsystem.

Copyright © 2019-2022 prpl Foundation

https://www.kernel.org/doc/html/latest/crypto/index.html
https://www.kernel.org/doc/html/latest/admin-guide/hw_random.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/hw_random.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/hw_random.h

Storage

MTD

Feature Kernel Subsystem Kernel API Dependencies

MTD MTD ioctl None

The MTD subsystem provides support for NOR and NAND flash devices.

Vendor kernels may not provide their own bad block management layer but should rely

on UBI to do the work.

MMC/SD/SDIO

Feature Kernel Subsystem Kernel API Dependencies

eMMC MMC mmc/blkdev None

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/mmc

eMMC flash devices handle bad block management internally, and must be exposed as

a plain block device, similar to a SATA hard disk.

Copyright © 2019-2022 prpl Foundation

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/mmc

Linux Containers

Container privileged

Feature Kernel Subsystem Kernel API Dependencies

Container -
privileged

V3.8+

Container unprivileged

Feature Kernel Subsystem Kernel API Dependencies

Container -
unprivileged

v4.19+

Copyright © 2019-2022 prpl Foundation

Features under review

● VLANs must be supported through Linux networking; to be documented

● DSL/G.fast, ATM/PTM

● VoIP endpoint interfaces for codec, SLIC/SLAC, TDM abstraction

● SFP cages

● GPON

● ePON

● Optical transceiver

● Cellular data, over USB, PCI or integrated

● DOCSIS

Contacts

The following table describes the primary contacts to ask about the low-level API.

Contact person Email address

Wouter Cloetens wouter.cloetens@prplfoundation.org

Copyright © 2019-2022 prpl Foundation

Appendix 1: WLAN API

Recommendations

The WLAN API recommendations are:

● cfg80211 driver for WLAN

● hostapd, wpa_supplicant, and iw support with WLAN management frames

transmitted via nl80211

Scope

The primary focus is the control interface to radio and access point functionality, with

STA (client) functionality as a lower priority. The data path is generally not a problem, as

all known existing drivers model this as a Linux Ethernet device.

Availability of source code, and the license of, the device driver, microcode, and any

firmware on an embedded offloaded processor, are out of scope.

The operating system scope is limited to Linux.

Reasoning

A lack of common interfaces for WLAN has a negative effect on all involved parties.

Open source OpenWrt (or other open source router platform) developers are locked

out from the use of officially supported drivers, which restricts which silicon solutions

they can support. Router middleware vendors find themselves designing their own

HAL's, and maintaining several implementations. WLAN is noted by middleware

vendors as one of the most complex layers to maintain across chipset SDKs and even

across versions of the same SDK.

Copyright © 2019-2022 prpl Foundation

While SDK users struggle with the lack of a common WLAN API, silicon vendors also

maintain multiple interfaces. Those that support OpenWrt develop and maintain their

own interface layer. Those that support RDK-B face the same effort with the RDK-B HAL.

Those that support other stacks, e.g. their own proprietary one, maintain yet another.

All parties can benefit from a commonly agreed upon interface. More devices

supported by OpenWrt benefits the project’s growth. Silicon vendors would only need

to support a single interface for all Linux-based devices. Middleware vendors will still

need some higher level management software, but the responsibility of the

maintenance of the layer between this and the common API will be moved firmly to the

middleware vendor. In addition, only one such implementation is needed. For example,

a single RDK-B HAL implementation would support all drivers, and therefore, the silicon

vendors would not need to maintain a HAL implementation for their chips.

Recommended APIs

The prpl Carrier Interest Group evaluated the Linux WLAN space and formally

recommends the creation and use of drivers based on cfg80211. Cfg80211 is actively

maintained by the Linux kernel community and technically and functionally vastly

superior to the older ioctl-based wireless interfaces. Additional background on the

reason for the kernel community’s move from ioctl interfaces to cfg80211/nl80211 can

be found at:

https://wireless.wiki.kernel.org/_media/en/developers/documentation/control.pdf.

Members of prpl Foundation are strongly encouraged to work with the Linux Wireless

community to add missing features into cfg80211, especially features which could be

used across multiple vendor implementations.

The standard WLAN driver delivery should include the cfg80211 management API. In

the event that the driver is part of a board support package (BSP) for a SoC, the

included Linux kernel should have cfg80211 enabled, as should the WLAN driver. The

Copyright © 2019-2022 prpl Foundation

https://wireless.wiki.kernel.org/_media/en/developers/documentation/control.pdf

use of the cfg80211 by higher level management software, that may be included in the

BSP, is recommended.

In addition to cfg80211 drivers, the Carrier Interest Group recommends the use of

hostapd, wpa_supplicant and iw connected to the driver via nl80211. In particular,

WLAN management frames should be transmitted between the driver and

hostapd/wpa_supplicant/iw via nl80211.

Vendor-specific extensions should be limited to hardware or implementation specific

functionality that is distinctly not present in cfg80211, and does not lend itself to an

extension of cfg80211 either.

Examples are control of embedded firmware, debugging interfaces to the lower layers

of the implementation, and special calibration logic. Any interfaces that must be used

by an operational control interface should be standardized. The recommended

interface for vendor-specific extensions is cfg80211 vendor commands.

Copyright © 2019-2022 prpl Foundation

References

Copyright © 2019-2022 prpl Foundation

